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• Principal factors of voltage collapse

• Generator reactive power/voltage control limits

• Load and reactive compensation devices’ characteristics

• Action of voltage control devices (such as ULTCs)

• Transmission system characteristics

• Review of the simple system considered in CH 2

• Current, voltage and power are:
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• Transmission system characteristics (Cont’d)

• Plots of 𝐼𝐼, 𝑉𝑉𝑅𝑅 , and 𝑃𝑃𝑅𝑅 as a function of load demand

tan 𝜃𝜃 = 10, cos 𝜙𝜙 = 0.95
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• Transmission system characteristics (Cont’d)

• Relationship between 𝑉𝑉𝑅𝑅 and 𝑃𝑃𝑅𝑅 (More traditional method)
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• Transmission system characteristics (Cont’d)

• Test system
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• Transmission system characteristics (Cont’d)

V variation at bus 530 as a function of total P load in area 1

• Curve is produced by using a series of power flow solutions

• Assumption

• Power factor is kept constant

• P and Q load are independent of V
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• Transmission system characteristics (Cont’d)

Q-V curves at buses 160, 200, 510, and 530

• Calculated as PV buses

• A point where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0 represents the voltage stability limit

• Principal causes of voltage instability

• Too high load, Too far between voltage sources and the load centers, Too low voltage source, 

Insufficient load reactive compensation

At point A At point B At point C
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• Generator characteristics

• Field current is automatically limited by an overexcitation limiter

• Armature current limit is realized manually by operators responding to alarms

• Curve 2: When excitation is limited

• Curve 1: Voltage regulated
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• Load characteristics

• Voltages are determined by composite characteristics of transmission system and 

loads

• When ULTCs reach the end of their tap change, voltages begin to drop

• Residential P and Q loads will drop with voltage

• Industrial loads (induction motors) will change little

• However, the capacitor will supply less Q, thereby causing Q load increase

• Voltages below 80%~90%, some induction motors may draw high Q
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• Characteristics of reactive compensating devices

• Shunt capacitors

• 𝑄𝑄 ∝ 𝑉𝑉2

• Beyond certain level of compensation, stable operation is unattainable

• Regulated shunt compensation

• SVS: NO voltage control or instability problems within the regulating range

• Synchronous condenser: Continues to supply Q, down to relatively low V

• Series capacitors

• 𝑄𝑄 ∝ 𝐼𝐼2

• Reduce both the characteristic impedance and the electrical length of the line
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• Typical scenario of voltage collapse

Large generating units being out of service

Some EHV lines are heavily loaded
(Q resources become at a minimum)

Loss of heavily loaded line

Considerable reduction of voltage

Load reduction and stabilizing (i.e., AVR)

Resulting additional Q cause increased V drop 
across each inductive element

ULTC would restore distribution voltages to 
prefault levels in about 2~4 minutes

Increment in load on EHV lines would increase 
𝑋𝑋𝐼𝐼2 and 𝑅𝑅𝐼𝐼2 losses

Q of generators would increase and eventually 
hit their limit

Field current limited and the terminal voltage 
would drop

Armature current increase due to fixed P and 
further limit Q

Overload more generators

Reduced effectiveness of shunt compensators 
at low voltages
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• Classification of voltage stability

• Large disturbance voltage stability

• Concerned with a systems ability to control voltages following large disturbances

• Must be examined by using nonlinear dynamic analysis

• Small disturbance voltage stability

• Concerned with a system’s ability to control voltages following small perturbations

• Can be examined by using steady-state analysis

• Necessary to define the region of voltage level considered acceptable
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• Examination of two aspects

• Proximity to voltage instability: How close is the system to voltage instability?

• Mechanism of voltage instability: How and why does instability occur?

• Modelling requirements

• Loads

• Generators and their excitation controls

• Static var systems

• Automatic generation control

• Protection and controls
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• Dynamic analysis

• Similar to transient stability analysis in CH 13

• Overall system equations may be expressed as:

• And a set of algebraic equations:

• With a set of known initial conditions (𝐱𝐱𝟎𝟎, 𝐕𝐕𝟎𝟎), where
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• Dynamic analysis (Cont’d)

• 𝐘𝐘𝐍𝐍 change as a function of bus voltage and time (ULTC, phase shift control)

• 𝐈𝐈 is a function of 𝐱𝐱 and 𝐕𝐕 (generating units, nonlinear static loads, motors, etc.)

• (14.4) and (14.5) can be solved in time-domain by using

• Any of numerical integration methods in CH 13

• Network power flow analysis methods in CH 6



16

• Static analysis

• Captures snapshots of system conditions at various time frames

• Time derivatives of the state variables (𝐱̇𝐱) are assumed to be zero

𝑽𝑽-𝑸𝑸 sensitivity analysis

• Network may be expressed in the following linearized form:

where
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• Static analysis (Cont’d)

𝑽𝑽-𝑸𝑸 sensitivity analysis (Cont’d)

• For each device when 𝐱̇𝐱 = 𝟎𝟎 may be expressed as follows:

where

• Let ∆𝐏𝐏 = 0, then 

where 
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• Static analysis (Cont’d)

𝑽𝑽-𝑸𝑸 sensitivity analysis (Cont’d)

• We may write

• Matrix 𝐉𝐉𝑅𝑅−1 is the reduced 𝑉𝑉-𝑄𝑄 Jacobian

• 𝑖𝑖th diagonal element is the 𝑉𝑉-𝑄𝑄 sensitivity at bus 𝑖𝑖

• Magnitude of 𝑉𝑉-𝑄𝑄 sensitivity:

• Positive: Stable operation

• Smaller value: More stable

• 𝑉𝑉-𝑄𝑄 relationship is nonlinear

• Magnitudes of the sensitivities for different system conditions do not provide a direct measure 

of the relative degree of stability
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• Static analysis (Cont’d)

𝑸𝑸-𝑽𝑽 modal analysis

• Voltage stability characteristics of the system can be identified by computing the 

eigenvalues and eigenvectors of the reduced Jacobian matrix 𝐉𝐉𝐑𝐑

where

• From (14.11),

• Substituting (14.10) gives

where

Each 𝝀𝝀𝒊𝒊 and corresponding 𝛏𝛏𝒊𝒊 and 𝛈𝛈𝒊𝒊
define 𝒊𝒊th mode of 𝑸𝑸- 𝑽𝑽 response
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• Static analysis (Cont’d)

𝑸𝑸-𝑽𝑽 modal analysis (Cont’d)

• Since 𝛏𝛏−1 = 𝛈𝛈, (14.13) may be written as:

where

• For comparison between (14.10) and (14.15)
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• Static analysis (Cont’d)

𝑸𝑸-𝑽𝑽 modal analysis (Cont’d)

• For 𝑖𝑖th mode, we have

• If 𝜆𝜆𝑖𝑖 > 0, the system is voltage stable

• If 𝜆𝜆𝑖𝑖 < 0, the system is voltage unstable

• The smaller the magnitude of 𝜆𝜆𝑖𝑖 , the closer the 𝑖𝑖th modal voltage is to being 

unstable

• 𝜆𝜆𝑖𝑖 = 0  𝑖𝑖th modal voltage collapse
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• Static analysis (Cont’d)

𝑸𝑸-𝑽𝑽 modal analysis (Cont’d)

• For example, for a 3-bus system,

• For mode 1:

or

𝜂𝜂11 𝜂𝜂12 𝜂𝜂13
𝜂𝜂21 𝜂𝜂22 𝜂𝜂23
𝜂𝜂31 𝜂𝜂32 𝜂𝜂33

Δ𝑉𝑉1
Δ𝑉𝑉2
Δ𝑉𝑉3

=
⁄1 𝜆𝜆1

⁄1 𝜆𝜆1
⁄1 𝜆𝜆1

𝜂𝜂11 𝜂𝜂12 𝜂𝜂13
𝜂𝜂21 𝜂𝜂22 𝜂𝜂23
𝜂𝜂31 𝜂𝜂32 𝜂𝜂33

Δ𝑄𝑄1
Δ𝑄𝑄2
Δ𝑄𝑄3

𝜂𝜂11Δ𝑉𝑉1 + 𝜂𝜂12Δ𝑉𝑉2 + 𝜂𝜂13Δ𝑉𝑉3 =
1
𝜆𝜆1

(𝜂𝜂11Δ𝑄𝑄1 + 𝜂𝜂12Δ𝑄𝑄2 + 𝜂𝜂13Δ𝑄𝑄3)

𝐪𝐪𝟏𝟏 =
1
𝜆𝜆1
𝐯𝐯𝟏𝟏
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• Static analysis (Cont’d)

𝑸𝑸-𝑽𝑽 modal analysis (Cont’d)

• Let Δ𝐐𝐐 = 𝐞𝐞𝐤𝐤, where 𝐞𝐞𝐤𝐤 has all zero elements except for the 𝑘𝑘th element = 1. Then,

where η𝑖𝑖𝑖𝑖 is the 𝑘𝑘th element of 𝛈𝛈𝑖𝑖

• The 𝑉𝑉-𝑄𝑄 sensitivity at bus 𝑘𝑘 is given by

 Cannot identify individual voltage collapse modes

 Instead, provide combined effect of all modes

• The magnitude of the eigenvalues can provide a relative measure of the proximity to 

instability

• Eigenvalues do not provide an absolute measure because of the nonlinearity of the 

problem
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• Static analysis (Cont’d)

Bus participation factors

• Participation of bus 𝑘𝑘 in mode 𝑖𝑖 is given by the bus participation factor:

 Determines that the contribution of 𝜆𝜆𝑖𝑖 to the 𝑉𝑉- 𝑄𝑄 sensitivity at bus 𝑘𝑘

• Sum of all the bus participations for each mode = 1

• Indicates the effectiveness of remedial actions applied at that bus in stabilizing the 

mode
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• Static analysis (Cont’d)

Bus participation factors (Cont’d)

• Type 1: Localized mode

• Has very few buses with large participations

• Other buses with close to zero participations

• Occurs if a single load bus is connected to very strong network through a long transmission 

line

• Type 2: Non-localized mode

• Has many buses with small but similar degrees of participations

• Rest of the buses with close to zero participations

• Occurs when a region within a large system is loaded up and the main Q support is exhausted
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• Static analysis (Cont’d)

Branch participation factors

• Let 𝐪𝐪 has all elements = 0 except for the 𝑖𝑖th element = 1

• From (14.15), corresponding vector of Q variation is

• Assume that all the right eigenvectors are normalized so that

• With

• With the angle and voltage variations for both ends are known, the linearized 

change in branch Q loss can be calculated
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• Static analysis (Cont’d)

Branch participation factors

• Participation factor:

 High value means either weak links or heavily loaded

Generator participation factors

• Given by:

• Indicate, for each mode, which generators supply the most Q in response to an 

incremental change in system Q loading

• Important information regarding proper distribution of Q reserves
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• Static analysis (Cont’d)

Illustration of modal analysis

• Consider Fig. 14.7

• Consider three operating

conditions A, B, and C on

the 𝑉𝑉-𝑉𝑉 curve of Fig. 14.4
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• Static analysis (Cont’d)

Illustration of modal analysis (Cont’d)

• Magnitudes of 𝜆𝜆 decrease as the system approaches instability

• At 𝜆𝜆1, point C, the system is on the verge of instability
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• Static analysis (Cont’d)

Illustration of modal analysis (Cont’d)

• Bus, branch, and generator participations for 𝜆𝜆 = 0.0083
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• Static analysis (Cont’d)

Illustration of modal analysis (Cont’d)

• Interest to compare with 𝑄𝑄-𝑉𝑉 characteristics

shown in Fig. 14.5(c)

• Shows that buses 530 and 510

have zero Q margin

• Table 14.2 shows that

these buses have high participation

• Comparison

• 𝑄𝑄-𝑉𝑉 analysis : Single-bus approach

• Modal analysis : System-wide approach
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• Determination of shortest distance to instability

Basic theory

• To find set of load P, Q increments whose vector sum is a minimum

• And when imposed on the initial condition, cause the Jacobian to be singular

• Power-flow equations in the form:

where

• Let 𝐉𝐉𝐗𝐗 and 𝐉𝐉𝛒𝛒 be the Jacobian matrices of 𝐟𝐟 w.r.t. 𝐱𝐱 and 𝛒𝛒

• Let 𝑆𝑆 denote the hypersurface in the 𝑁𝑁-dimensional parameter space such that 

𝐉𝐉𝐗𝐗(𝐱𝐱∗,𝛒𝛒∗) is singular if 𝛒𝛒∗ is a point on 𝑆𝑆

: System vector and parameter vector
Both are 𝑁𝑁 = 2𝑁𝑁𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑃𝑃𝑃𝑃 dimensional vectors
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• Determination of shortest distance to instability

Basic theory (Cont’d)

• Initial point: (𝐱𝐱𝟎𝟎,𝛒𝛒𝟎𝟎)

• Find 𝛒𝛒∗ on 𝑆𝑆 such that the distance 𝑘𝑘 = |𝛒𝛒∗ − 𝛒𝛒𝟎𝟎| is a local minimum

• Assuming 𝑆𝑆 is a smooth hypersurface near 𝛒𝛒∗

• Normal vector to this hypersurface at (𝐱𝐱∗,𝛒𝛒∗) is given by

where

• Incrementally increasing 𝛒𝛒 toward particular direction until 𝐉𝐉𝐗𝐗 becomes singular; that 

is,
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• Determination of shortest distance to instability

Basic theory (Cont’d)

• Following procedure determines the vector 𝛈𝛈∗ (for the shortest distance)
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• Determination of shortest distance to instability

A simple radial system example

• Consider system shown in Fig. 14.8

• (14.36) gives:
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• Determination of shortest distance to instability

A simple radial system example (Cont’d)

• Jacobian matrices are

• On the singular surface 𝑆𝑆, det 𝐉𝐉𝐗𝐗 = 0, that is,

or

• Following expression describes the singular surface 𝑆𝑆 :
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• Determination of shortest distance to instability

A simple radial system example (Cont’d)

• Assume the initial condition as:

• Iterative process of finding the closest voltage instability point:
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• Determination of shortest distance to instability

A simple radial system example (Cont’d)

※ In case of large system, the shape of the 
hypersurface is not known. We can expect 
that this process will find only a local 
minimum. It may be appropriate to use 
uniform loading for the initial direction.
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• Determination of shortest distance to instability

General description of the procedure

Means
instability
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• The continuation power-flow analysis

• Conventional power-flow algorithms are prone to convergence problems at 

operating conditions near the stability limit

• Continuation power-flow analysis overcomes this problem

Basic principle

Load fixed

Voltage fixed
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• The continuation power-flow analysis

Mathematical formulation

• Similar to standard power-flow analysis except that load increase is added as a 

parameter

• Reformulated equation:

where

• Equation may be rearranged as:

Base load Critical load



42

• The continuation power-flow analysis (Cont’d)

Mathematical formulation: Predictor step

• Estimate next solution for a change in one of the state variables

• Taking derivatives of (14.46):

• Since the unknown variable (𝜆𝜆) is added, one more equation is needed to solve

• This is satisfied by setting one of the components of the tangent vector to 1 or -1

• This component is referred to as the continuation parameter

where 𝐞𝐞𝐤𝐤 is all zero except 𝑘𝑘th element = 1 (corresponding to the continuation parameter)

Setting one of the tangent vector 
components +1 or -1 imposes a
non-zero value on the tangent vector 
and makes Jacobian nonsingular at the
critical point.
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• The continuation power-flow analysis (Cont’d)

Mathematical formulation: Predictor step (Cont’d)

• Initially, the load parameter 𝜆𝜆 is chosen as the continuation parameter

• And the corresponding component of the tangent vector is set to 1

• Next, the continuation parameter is chosen to be the state variable that has the greatest rate of 

change near the given solution

• Sign of its slope determines the sign of the corresponding component of the tangent vector

• Once the tangent vector is found, the prediction for the next solution is given:

• The step size 𝜎𝜎 is chosen so that a power flow solution exists with the specified continuation 

parameter

• If a solution cannot be found, reduce the step size
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• The continuation power-flow analysis (Cont’d)

Mathematical formulation: Corrector step

• The original set of equations is augmented by one equation:

Introduction of the additional equation makes the Jacobian non-singular at the 

critical point

• The tangent component λ (i.e. 𝑑𝑑λ) is

• Positive for upper portion of V-P curve

• Zero at the critical point

• Negative beyond the critical point

Selected as the continuation parameter

Predicted value of 𝑥𝑥𝑘𝑘

Continuation parameter Corrector line

Load increase Vertical

Voltage magnitude Horizontal

See Fig. 14.10
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