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* Principal factors of voltage collapse
« Generator reactive power/voltage control limits
* Load and reactive compensation devices' characteristics

- Action of voltage control devices (such as ULTCs)

 Transmission system characteristics

« Review of the simple system considered in CH 2

 Current, voltage and power are:
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Figure 14.1 Characteristics of a simple radial system
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 Transmission system characteristics (Cont'd)

 Plots of I, V, and Py as a function of load demand
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(b) Receiving end voltage, current and power as a function of load demand

Figure 14.1 Characteristics of a simple radial system
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 Transmission system characteristics (Cont'd)

« Relationship between V; and P, (More traditional method)
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Figure 14.2 The V,-Pj characteristics of the system of Figure 14.1
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 Transmission system characteristics (Cont'd)

« Test system
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Figure 14.3 A 39-bus, 10-machine test system
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 Transmission system characteristics (Cont'd)
V variation at bus 530 as a function of total P load in area 1
 Curve is produced by using a series of power flow solutions
« Assumption

Power factor is kept constant 1.0+

P and Q load are independent of V 0gl
0.61

0.4r

Bus voltage magnitude (pu)

0.2r

0.{} 1 | 1 1 | J
g0 100 120 140 160 180 200

Total active power (MW) in area |

Figure 14.4 The V-P curve at bus 530 of the system shown in Figure 14.3



Basic Concepts Related to Voltage Stability

 Transmission system characteristics (Cont'd)

Q-V curves at buses 160, 200, 510, and 530

» Calculated as PV buses

* A point where dQ/dV = 0 represents the voltage stability limit

» Principal causes of voltage instability

i 25L&

Power Systems Lab

Too high load, Too far between voltage sources and the load centers, Too low voltage source,

Insufficient load reactive compensation

Figure 14.5 The Q-V curves for system shown in Figure 14.3
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e Generator characteristics

« Field current is automatically limited by an overexcitation limiter
« Armature current limit is realized manually by operators responding to alarms

» Curve 2: When excitation is limited

Vri
Curve 2 (excitation of G; at its limit
 Curve 1: Voltage regulated ve 2 ( : )
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(a) Schematic diagram (b) The Vy-P, characteristics

Figure 14.6 Impact of loss of regulation of intermediate bus voltage
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e Load characteristics

 Voltages are determined by composite characteristics of transmission system and
loads
« When ULTCs reach the end of their tap change, voltages begin to drop
Residential P and Q loads will drop with voltage
Industrial loads (induction motors) will change little

However, the capacitor will supply less Q, thereby causing Q load increase

 Voltages below 80%~90%, some induction motors may draw high Q
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 Characteristics of reactive compensating devices

+ Shunt capacitors
Q x V2
Beyond certain level of compensation, stable operation is unattainable
+ Regulated shunt compensation
SVS: NO voltage control or instability problems within the regulating range
Synchronous condenser: Continues to supply Q down to relatively low V
« Series capacitors
Q x I?

Reduce both the characteristic impedance and the electrical length of the line

10



Voltage Collapse

« Typical scenario of voltage collapse

Large generating units being out of service

Increment in load on EHV lines would increase
XI? and RI? losses

v v
Some EHV lines are heavily loaded Q of generators would increase and eventually
(Q resources become at a minimum) hit their limit
4 . 4
Loss of heavily loaded line Field current limited and the terminal voltage
7 would drop
Considerable reduction of voltage 2

v

Load reduction and stabilizing (i.e., AVR)

Armature current increase due to fixed P and
further limit Q

v

\

Resulting additional Q cause increased V drop
across each inductive element

Overload more generators

4

4

ULTC would restore distribution voltages to
prefault levels in about 2~4 minutes

Reduced effectiveness of shunt compensators
at low voltages

Pcwor Systemns Lab
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« Classification of voltage stability

- Large disturbance voltage stability
Concerned with a systems ability to control voltages following large disturbances

Must be examined by using nonlinear dynamic analysis

» Small disturbance voltage stability
Concerned with a system'’s ability to control voltages following small perturbations
Can be examined by using steady-state analysis

Necessary to define the region of voltage level considered acceptable

12
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e Examination of two aspects
« Proximity to voltage instability: How close is the system to voltage instability?

» Mechanism of voltage instability: How and why does instability occur?

» Modelling requirements

Loads

Generators and their excitation controls

Static var systems

Automatic generation control

Protection and controls

13
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* Dynamic analysis
« Similar to transient stability analysis in CH 13
 Overall system equations may be expressed as:
% = f(x,V) (14.4)
- And a set of algebraic equations:
I(x,V) = Y,V (14.5)
« With a set of known initial conditions (xq, V), where

x = state vector of the system

V = bus voltage vector

I = current injection vector

Yy = network node admittance matrix

14
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* Dynamic analysis (Cont'd)
* Yy change as a function of bus voltage and time (ULTC, phase shift control)
T is a function of x and V (generating units, nonlinear static loads, motors, etc.)

* (14.4) and (14.5) can be solved in time-domain by using
Any of numerical integration methods in CH 13

Network power flow analysis methods in CH 6

15
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e Static analysis
- Captures snapshots of system conditions at various time frames
- Time derivatives of the state variables (x) are assumed to be zero
V-Q sensitivity analysis

» Network may be expressed in the following linearized form:

Jo, J
AP _| e TRV AQ (14.6)
AQ Jos Jov |LAY
where

AP = incremental change in bus real power
AQ = incremental change in bus reactive power injection
AO = incremental change in bus voltage angle
AV = incremental change in bus voltage magnitude

16
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« Static analysis (Cont'd)
V-Q sensitivity analysis (Cont'd)

 For each device when x = 0 may be expressed as follows:

AP::] A‘11 AIZ Avd-l
= ] (14.7y
'&Qd AQI AZE Aﬂcl
where

AP, = incremental change in device real power output
AQ, = incremental change in device reactive power output
AV, = incremental change in device voltage magnitude
A8, = incremental change in device voltage angle

* Let AP = 0, then

AQ = J AV (14.8)
where
T = Woy=JoeTredpy] (14.9)

17
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« Static analysis (Cont'd)
V-Q sensitivity analysis (Cont'd)

* We may write

AV = J;ﬁQ (14.10)

Matrix Jz?! is the reduced V-Q Jacobian

ith diagonal element is the V-Q sensitivity at bus i

Magnitude of V-Q sensitivity:
Positive: Stable operation

Smaller value: More stable

V-Q relationship is nonlinear

Magnitudes of the sensitivities for different system conditions do not provide a direct measure

of the relative degree of stability

18
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« Static analysis (Cont'd)
Q-V modal analysis

- Voltage stability characteristics of the system can be identified by computing the
eigenvalues and eigenvectors of the reduced Jacobian matrix Jg

J, = EAn (14.11)

where E = right eigenvector matrix of Jy
n = left eigenvector matrix of Jy
A = diagonal eigenvalue matrix of Jy

-1 -1 .
* From (14.11), Jp = €A7n (14.12) Each 4; and corresponding €; and 1);

define ith mode of Q- V response

« Substituting (14.10) gives
AV = EA'9AQ (14.13) AV - g%_'.'_*aq (14.14)

where

E, is the i" column right eigenvector and 7, the i row left eigenvector of Jy,

19
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« Static analysis (Cont'd)
Q-V modal analysis (Cont'd)

- Since &1 =1, (14.13) may be written as:
nAV = A'nAQ
v =Alq (14.15)
where

v = nAV is the vector of modal voltage variations

q = nAQ is the vector of modal reactive power variations

» For comparison between (14.10) and (14.15)
AV = J;QQ (14.10)

20
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« Static analysis (Cont'd)
Q-V modal analysis (Cont'd)

« For ith mode, we have

1
v. =

—q. 14,
; 1,.(" (14.16)

If A; > 0, the system is voltage stable

If A; <0, the system is voltage unstable

The smaller the magnitude of 4;, the closer the ith modal voltage is to being

unstable

Ai = 0 = ith modal voltage collapse

21
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« Static analysis (Cont'd)
Q-V modal analysis (Cont'd)

« For example, for a 3-bus system,

N1 Mz M3 |AV; 1/44 N1 M1z M3 |AQ;
[7721 N22 MN23||AV, | = 1/14 M21 MN22 MN23||AQ,
N31 M3z N33l|AV; 1/A¢|M31 M32 M331|AQ;

* For mode 1:

1
(M11AVy + 11248V, + 1134V3) = /1_1 (M1140Q1 + 112AQ, + 113AQ3)

or

22
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e Static analysis (Cont'd)
Q-V modal analysis (Cont'd)

« Let AQ = ey, where ey has all zero elements except for the kth element = 1. Then,

AV = Y} “‘IF”‘

where n;; is the kth element of n;

« The V-Q sensitivity at bus k is given by

v, EriMik

——

dQ, A

(14.17)

- Cannot identify individual voltage collapse modes
- Instead, provide combined effect of all modes

» The magnitude of the eigenvalues can provide a relative measure of the proximity to
instability

- Eigenvalues do not provide an absolute measure because of the nonlinearity of the
problem

23
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« Static analysis (Cont'd)
Bus participation factors

« Participation of bus k in mode i is given by the bus participation factor:
Py = EMi (14.13)
- Determines that the contribution of 1; to the V- Q sensitivity at bus k

« Sum of all the bus participations for each mode = 1

- Indicates the effectiveness of remedial actions applied at that bus in stabilizing the

mode

24
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« Static analysis (Cont'd)
Bus participation factors (Cont'd)

» Type 1: Localized mode
Has very few buses with large participations
Other buses with close to zero participations
Occurs if a single load bus is connected to very strong network through a long transmission
line
« Type 2: Non-localized mode
Has many buses with small but similar degrees of participations
Rest of the buses with close to zero participations

Occurs when a region within a large system is loaded up and the main Q support is exhausted

25
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« Static analysis (Cont'd)
Branch participation factors

 Let q has all elements = 0 except for the ith element = 1

From (14.15), corresponding vector of Q variation is

AQO - nlq = Eq = E (14.19)

Assume that all the right eigenvectors are normalized so that

YE =1 (14.20)
J
- With
X 1 . . i .
(i _ (i) i 1 i
AVD = IAQ (14.21) ABD = —Joo 3. AVO (14.22)

i

With the angle and voltage variations for both ends are known, the linearized

change in branch Q loss can be calculated

26
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e Static analysis (Cont'd)
Branch participation factors

- Participation factor:

AQ,,, for branch j
Fi = i (14.23)
7 maximum AQ,  for all branches

- High value means either weak links or heavily loaded
Generator participation factors
 Given by:

P - AQ, for machine m (14.24)

™ maximum AQ for all machines

* Indicate, for each mode, which generators supply the most Q in response to an

incremental change in system Q loading

 Important information regarding proper distribution of Q reserves

27
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« Static analysis (Cont'd)

lllustration of modal analysis

Area prone to instability

 Consider Fig. 14.7 sto
un .
: : ) 1011
 Consider three operating o om U S T - --Qa
I ||:BP=1_0 | BP=0.800 | E— 1—_" : BP=0.817 10;20
. ; - — ] M2
conditions A, B, and C on l ! | | ' R o
- - a7 S @63
: N 1014
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Figure 14.7 Buses and branches with high participation
in the least stable mode
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« Static analysis (Cont'd)
lllustration of modal analysis (Cont'd)
« Magnitudes of A decrease as the system approaches instability

+ At 14, point C, the system is on the verge of instability

Table 14.1 Five smallest eigenvalues

Opein : : 3
» 0.3867 0.1446 0.0083
Ay 1.0271 0.5550 0.3209
Ay 2.4049 1.5133 0.9334 |
hy 4.1031 2.6280 1.8757
s 4.2699 3.0209 2.3373

29
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« Static analysis (Cont'd)
lllustration of modal analysis (Cont'd)

 Bus, branch, and generator participations for 1 = 0.0083

Table 14.2 Bus, branch, and generator participations in
the least stable mode for operating point C

Bus Participation Branch Participation Generator Participation
Bus Participation Branch Participation Bus Participation
530 0.2638 500-520 1.0000 1311 1.0000
520 0.2091 300-360 0.8414 2412 0.2786
510 0.1025 100-350 0.8175 1011 0.2103
500 0.0941 320-500 0.8093 1014 0.2036
320 0.0482 330-350 0.6534 1013 0.2036
310 0.0319 1012 0.2036
300 0.0296

340 0.0279

30
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« Static analysis (Cont'd)

lllustration of modal analysis (Cont'd)

* Interest to compare with Q-V characteristics
shown in Fig. 14.5(c) 200l
Bus 200
« Shows that buses 530 and 510 oo}  Bus 330 "
Bus 160
have zero Q margin 0 PR
Bus 510
- Table 14.2 shows that “100} _// ®
00 03 06 09 12

these buses have high participation

« Comparison
Q-V analysis : Single-bus approach

Modal analysis : System-wide approach

31
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« Determination of shortest distance to instability

Basic theory

» To find set of load P Q increments whose vector sum is a minimum

And when imposed on the initial condition, cause the Jacobian to be singular

Power-flow equations in the form:

V| |P 2
£x,0) =8| ||| =0 (14.30)
0] [Q
where |V | P : System vector and parameter vector
*“leo P - Q Both are N = 2Npq + Npy dimensional vectors

Let Jx and J, be the Jacobian matrices of f w.rt. x and p

Let S denote the hypersurface in the N-dimensional parameter space such that

Jx(X., p.) is singular if p, is a point on §

32
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« Determination of shortest distance to instability

Basic theory (Cont'd)
« Initial point: (X¢, po)

* Find p, on S such that the distance k = |p. — pg| is a local minimum

Assuming S is a smooth hypersurface near p,

Normal vector to this hypersurface at (x.,p.) is given by
n, =wJ, (14.37)

where w. is the left eigenvector of J (x.,p.) corresponding to the zero eigenvalye

7, is normalized such that |n,|=1

Incrementally increasing p toward particular direction until Jx becomes singular; that

is, P+ = Py tkm (14.38)
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« Determination of shortest distance to instability

Basic theory (Cont'd)

« Following procedure determines the vector 1, (for the shortest distance)

(1)  Let n, be an initial guess for the direction n,, |n,|=1.

(2) Stress the system by incrementally increasing p along the direction of 7, until
J, becomes singular; that is, determine k;, p, and x; so that p,=p,+kn, is on
the surface S.

(3) Setn,,=wJ,,and |n, |=1.

(4) Iterate steps 1, 2, 3 until n, converges to a value 7n,. Then, p.=p,+k,n, is
the corresponding equilibrium condition.

34
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« Determination of shortest distance to instability

A simple radial system example
 Consider system shown in Fig. 14.8

* (14.36) gives:

4Vsine - P 0
f(x,p) = , } :{ } (14.39)
4Veosa -4V*-Q | 0
V q P
X = an =
« P Q
120 Z=j0.25 Ve -a

P+jQ

Figure 14.8 A simple radial system

SLG
i 25L&
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« Determination of shortest distance to instability

A simple radial system example (Cont'd)

» Jacobian matrices are

4Vcosa 4sing
J = (14.40) J =
X -4Vsinoe 4cosa -8V p

-1 0
0 -1

» On the singular surfar= 0, det(Jx) = 0, that is,

det(J ) = 16V -32V?cosa (14.42)
or
y- ! (14.43)

2cosa

 Following expression describes the singular surface S :

P2+4Q-4 =0 (14.44)

SLG
i 25L&
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« Determination of shortest distance to instability

A simple radial system example (Cont'd)

« Assume the initial condition as:

P, =08 0, = 0.4 V, = 0.8554 o = 13.52°
* Iterative process of finding the closest voltage instability point:

Table 14.3 Calculation of the shortest distance to voltage
instability for the system of Figure 14.8

Iteration Left Eigenvector 1, Distance to Instability (k,) P, O
1 [0.9725 -0.2331]T 1.0725 1.8430, 0.1500
2 [0.6776 0.7354]7 0.4173 1.0828, 0.7069 |
3 [0.4869 0.8735]" 0.4061 0.9977, 0.7541
4 [0.4443 0.8959]T 0.4024 0.9788, 0.7605
5 [0.4405 0.8977]T 0.4016 0.9769, 0.7605
6 [0.4378 0.8991]" 0.4015 0.9758, 0.7610
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« Determination of shortest distance to instability

A simple radial system example (Cont'd)

3.0

2.5

X In case of large system, the shape of the
hypersurface is not known. We can expect
that this process will find only a local
minimum. It may be appropriate to use

Load active power in pu

15 10 03 0.0 03 1.0 1.5 uniform loading for the initial direction.

Load reactive power in pu

Figure 14.9 The singular surface S in the P-Q plane, and
the convergence of the iterative process
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« Determination of shortest distance to instability

General description of the procedure

(1)

(2)

3)

(4)

Increase load from P, Q, in some direction (the choice of the initial direction M

. . . . . . . eans
will be discussed later) until an eigenvalue of the Jacobian is practically zero. v . tabilit
The load level P,, Q, corresponding to this point is the stability limit. This Instability
point P, Q, lies on, or is extremely near, S.

For the conditions at P,, Q,, perform modal analysis and determine the left
eigenvector of the full Jacobian matrix. The left eigenvector contains elements
which provide the increments of MW and MVAr load for each bus. The
eigenvector points in the shortest direction to singularity, which is therefore > n4V = A'nAQ

normal to S.

Go back to the base case load level Py, Q, and load the system again, but this
time in the direction given by the left eigenvector found in (2). When S is
reached, a new left eigenvector is computed.

Again we return to the base case P, Q, and load the system in the direction
of the new eigenvector given in (3). This process is repeated until the
computed eigenvector does not change with each new iteration. The process
will then have converged.

39
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e The continuation power-flow analysis
« Conventional power-flow algorithms are prone to convergence problems at
operating conditions near the stability limit

 Continuation power-flow analysis overcomes this problem

Basic principle

| Predictor Load fixed
A /
Corrector

? Voltage fixed
Exact solution C “*n/ oltage Tixe
“=~D

Bus voltage

Lc}a;l

Figure 14.10 A typical sequence of calculations

in a continuation power-flow analysis
40
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e The continuation power-flow analysis
Mathematical formulation

- Similar to standard power-flow analysis except that load increase is added as a

parameter

» Reformulated equation:
F(0.V) = AK (14.45)

where ) is the load parameter
0 is the vector of bus voltage angles
V is the vector of bus voltage magnitudes
K is the vector representing percent load change at each bus

0 <A <A

critical

Base load Critical load

« Equation may be rearranged as:

F(O,V,1) =0 (14.46)

41
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* The continuation power-flow analysis (Cont'd)

Mathematical formulation: Predictor step

Estimate next solution for a change in one of the state variables

b

Taking derivatives of (14.46):
Setting one of the tangent vector

Fod0+F,dV+F,d\L =0 components +1 or -1 imposes a
non-zero value on the tangent vector

[ “ 14.47 and makes Jacobian nonsingular at the
[ Fo ¥y F; 1)V =0 (14.47) critical point.
di

Since the unknown variable (1) is added, one more equation is needed to solve
This is satisfied by setting one of the components of the tangent vector to 1 or -1

This component is referred to as the continuation parameter

do
F, ¥y F, 0

+1

(14.48)

ek di

where ey is all zero except kth element = 1 (corresponding to the continuation parameter)
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* The continuation power-flow analysis (Cont'd)

Mathematical formulation: Predictor step (Cont'd)

Initially, the load parameter 1 is chosen as the continuation parameter
And the corresponding component of the tangent vector is set to 1

Next, the continuation parameter is chosen to be the state variable that has the greatest rate of
change near the given solution

Sign of its slope determines the sign of the corresponding component of the tangent vector

Once the tangent vector is found, the prediction for the next solution is given:

.
0 9, do |
V|=|V,|+ao|adV (14.49)
A X da

The step size g is chosen so that a power flow solution exists with the specified continuation
parameter

If a solution cannot be found, reduce the step size

43



Voltage Stability Analysis g 25U =

Power Systemns Lab

« The continuation power-flow analysis (Cont'd)

Mathematical formulation: Corrector step

« The original set of equations is augmented by one equation:

F(0,V.})
- [0] (14.50)

XM
\ Predicted value of x;

Selected as the continuation parameter
Introduction of the additional equation makes the Jacobian non-singular at the

critical point

» The tangent component A (i.e. dA) is

See Fig. 14.10
- Positive for upper portion of V-P curve Continuation parameter
« Zero at the critical point Load increase Vertical

+ Negative beyond the critical point Voltage magnitude Horizontal
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